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An efficient algorithm for accurately simulating curvature flow for large networks of curves
in two dimensions and surfaces in three dimensions on uniform grids is proposed. This
motion arises in the technologically important problem of simulating grain boundary
motion in polycrystalline materials. In this formulation grain boundaries are zero-level sets
of signed distance functions. Curvature motion is achieved by first diffusing locally main-
tained signed distance functions followed by a reinitialization step. A technique is devised
to allow a single signed distance function to represent a large subset of spatially separated
grains. Hundreds of thousands of grains can be simulated using a small number of signed
distance functions (in this work, 32 in two dimensions and 64 in three dimensions are
more than sufficient) using modest computational hardware.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

A polycrystalline material contains many crystallites (often called grains), differentiated by varying orientation. These
materials are very commonplace, including most metals and ceramics. The properties of the microscale polycrystalline struc-
ture affect macroscale properties of these materials, such as fracture strength and conductivity. As such, understanding the
statistics of the microscale structure is of great interest to materials scientists. One important model consists of grains mov-
ing with a normal velocity equal to curvature with grain boundaries meeting at 120� at triple points (for example, see Mul-
lins [21] or Hillert [11]). Much work has focused on obtaining various statistics of grains evolving in this manner since such
quantities may hold the key to important macroscopic properties. In order to obtain robust results, large-scale simulations
with hundreds of thousands to millions of grains would be ideal. This is a challenging computational problem, especially in
three dimensions. We propose and demonstrate a new algorithm for large-scale simulations of this evolution, expanding on
the work in [4].

According to the well-known model of Mullins [21], grain boundaries evolve with normal velocity given by
vn ¼ lcj;
where l denotes the boundary mobility, c is the surface tension, and j is the mean curvature of the interface between grains.
In many cases (e.g. the isothermal annealing of pure metals), the mobility and surface tension may be taken to be constant,
so that the normal velocity of the interface (a curve in two dimensions and a surface in three dimensions) is proportional to
mean curvature. We consider the simplest, yet still important, case: that of equal surface tensions for each grain. We set
lc ¼ 1 for convenience. As shown in [22,34], this normal speed arises as gradient descent for the energy
E ¼
X
k<‘

ðlength of Ck‘Þ;
. All rights reserved.
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where Ck‘ is the boundary between grain k and grain ‘ (and length is replaced by area in three dimensions). The standard
boundary condition for this problem is the Herring angle condition, which for equal surface tensions states that triple junc-
tions must meet at angles of 120�. This angle condition arises naturally from the algorithms used in this paper, as shown in
[4].

The algorithm we use in this paper is based on distance function based diffusion generated motion developed by Esedog�lu
et al. [4] in which signed distance functions to interfaces are convolved with Gaussian kernels to generate a variety of geo-
metric motions, including multi-phase motion by mean curvature, in an unconditionally stable manner. These algorithms are
variants of the original threshold dynamics scheme of Merriman et al. [20] in which characteristic functions are diffused to
generate mean curvature motion. Replacing characteristic functions in [20] with signed distance functions allows algorithms
in [4] to attain good accuracy on modest sized uniform grids with no need for adaptive refinement. In [20] the authors also
consider multi-phase mean curvature motion and propose an algorithm based on representing each phase by a level set
function and evolving them via the standard level set PDE for mean curvature motion; see also [32]. A detailed discussion
of the differences between the algorithm in [4] (an extended version of which will be developed and used here) and those
in [20] can be found in [4].

The problem of simulating networks of grains moving by curvature flow has attracted much attention over the
past few decades and many different computational approaches have been proposed. We feel that the algorithm pre-
sented here has advantages over previous formulations. Indeed, we are able to perform well-resolved simulations of
grain networks in both two and three dimensions on a scale significantly larger than previously reported in the lit-
erature. We can easily simulate more than 250,000 grains in two dimensions, and 100,000 grains in three
dimensions.

In previous work, grain boundary networks moving by curvature flow have been simulated by front tracking techniques
in both two (e.g. [14]) and three dimensions (e.g. [31]). Computational efficiency is the big advantage of this approach
since all the computational resources are concentrated on the interface. A fundamental difficulty of this approach is man-
aging the plethora of topological changes that can occur as grains disappear. These methods must explicitly detect and
handle each topological change by some selection of rules and require that the triple point condition be maintained sep-
arately. Furthermore, it is difficult to check if edges (in two dimensions) or surfaces (in three dimensions) cross using ex-
plicit methods. In three dimensions, it is a particularly difficult task to enumerate the ways in which two explicitly
represented surfaces might meet. Even more difficult, if not practically impossible, would be checking to see if any such
collisions occur. Using such representations in practice requires making assumptions about the types of topological
changes that can typically occur. These assumptions may leave out important transitions or allow for nonphysical artifacts
such as the interpenetrating of phase boundaries. For examples of these topological transition rules, see the types of crit-
ical events permitted in simulations [14,31] and the discussion of the surface operations permitted in Brakke’s Surface
Evolver code in [2]. In two dimensions, it is expected (though not fully proven, see [18]) that boundary networks under
pure curvature motion change topology only through junction collisions, greatly simplifying the class of interactions pos-
sible. However, no such expectation is held in three dimensions. Even in the two-phase case, one phase can pinch off and
split into two pieces. In two dimensions, the addition of bulk energy terms to the energy will also generally result in more
complicated topological changes.

The phase-field formulation (e.g. [6,10,16,13,29]) will ameliorate these difficulties, but introduce a problem of its own.
In this approach, a phase function is evolved for each grain and the grain boundary is a level set of the phase function.
These methods naturally handle the aforementioned difficulties associated with topological changes but require the phase
function to have a sharp transition layer at the grain boundary. It is crucial that this layer be fully resolved in order to
accurately approximate curvature flow. For example, Kim et al. [13] report that they need at least six grid points in the
transition layer to achieve acceptable accuracy. This indicates that a typical grain size must have something like 25 grid
points per dimension to be even marginally resolved – a serious limitation to the accurate simulation of a large number of
grains. We show that, using the approach described in this paper, our grains are well-resolved with 10 grid points per
dimension, and we can follow them as they shrink down to about 4 or 5 grid points per dimension with a few percent
relative error. Similar difficulties are present using threshold dynamics [19,20,24,26]. Threshold dynamics methods can
become ‘‘stuck” on uniform grids in regions where the interface moves slowly (although this situation can be remedied
via adaptive refinement; see e.g. [25,24]).

Another approach is to use a Potts model via kinetic Monte Carlo techniques (e.g.[1]). This is essentially a different model
and its connection with curvature flow is a difficult question. Finally we mention that there are level set techniques, different
than those present here, that could also be employed to tackle this problem (e.g. [34,5]).

The algorithm used in this paper is able to capture many of the advantages of the above methods with few of the dis-
advantages. Our method represents the grain boundaries implicitly using a signed distance function thereby achieving sub-
grid accuracy on a uniform mesh. Our method naturally handles topological changes and naturally imposes the Herring
angle conditions (i.e. 120�) at junctions. Therefore, we capture the advantages of the phase field method without the dis-
advantage of needing to resolve a transition layer. In addition, the algorithms proposed in this paper are unconditionally
stable. We have developed a technique in which sufficiently separated grains are represented by the same distance func-
tion (something similar was done for a phase field method in [16]). In addition, some of the computational work can be
confined to narrow band near the grain boundaries. In this way we keep some of the advantage of the front-tracking
formulations.
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In this work, we implement the algorithm introduced in [4] (more fully described in Section 2). We then present results
from a large two-dimensional simulation (initially containing over 150,000 grains), and preliminary results from a three-
dimensional simulation (beginning with over 15,000 grains) in Section 3 (detailed three-dimensional results with over
100,000 grains will be published separately). We conclude by presenting an extension to the algorithm in Section 4 which
allows for the inclusion of bulk energy terms into the energy functional for which our evolution constitutes gradient descent
dynamics.

2. Algorithm

The signed distance function-based diffusion generated algorithm for motion by mean curvature of multiple phases as
proposed in [4] is reproduced below. The evolution generated by this algorithm is proven to generate motion by mean cur-
vature and to satisfy the symmetric Herring angle condition at triple junctions [4] in 2D (and hence also along triple lines in
3D).

We shall first describe the algorithm presented in [4] using the following notation: The set of points contained in the kth
grain at time t ¼ nDt will be denoted as Rn

k where Dt is the time step. The signed distance function from the boundary of Rk
n is

denoted as dk
n. Our sign convention is such that dk

n > 0 for points in Rk
n. Further we suppose that there are N grains. The algo-

rithm devised in [4] is then given by:
1. Given the initial sets R0
1; . . . ;R0

N � Rm construct the corresponding signed distance functions d0
k (i.e. R0

k ¼ fx : d0
kðxÞ > 0g).

For n ¼ 0; . . . ;nmax, perform steps 2–4.
2. Form the convolutions: AkðxÞ :¼ KDt � dn

k for k ¼ 1; . . . ;N, where KDt is
KDt ¼ GDt or KDt ¼
1
4

4G3
2Dt � G3Dt

� �
;

and GDt is the fundamental solution of the heat equation:

GDtðxÞ ¼
1

ð4pDtÞ
m
2

e�
jxj2
4Dt :

3. Construct BkðxÞ for k ¼ 1; . . . ;N to remove overlaps and vacuums from the convolution step:
BkðxÞ ¼
1
2
ðAkðxÞ �max

‘
fA‘ðxÞ : ‘ – kgÞ
4. Construct the updated signed distance function dnþ1
k ðxÞ for k ¼ 1; . . . ;N according to
dnþ1
k ðxÞ ¼ RedistðBkðxÞÞ:
Remarks. The operation RedistðBðxÞÞmeans construct a signed distance function from the zero-level set of BðxÞ. Formally

the algorithm has the same order of accuracy using either GDt or KDt ¼ 1

4 4G3
2Dt � G3Dt

� �
, however the spatial truncation error

of the second kernel is devoid of terms involving derivatives of curvature; see [4] for details. The redistribution or projection
step 3 of the algorithm above is the same as in the threshold dynamics case [20] and is motivated by the well-known phase-
field formulation (e.g. [3,10]) of the problem.

As stated here, the algorithm uses one distance function per grain. The improvement to the algorithm proposed in this
work stems from the observation that a single distance function can serve to represent many grains that are not immediate
neighbors of each other. Further, if we demand that only grains which are sufficiently far apart share the same distance func-
tion, then potential interactions that could occur during the convolution step will be negligible.

2.1. Extension

Here we present an extension of the algorithm from the previous section that allows one to use the same distance func-
tion for multiple grains. The setting for this algorithm is slightly different than the previous one. We begin as before, namely
with N grains R0

k with k ¼ 1; . . . ;N, but initialize only M signed distance functions, d0
‘ with ‘ ¼ 1; . . . ;M, where M < N. These

d0
‘ have the property that they are the signed distance function for a collection of disjoint grains, and the union of these col-

lections consists of all the grains. As the algorithm proceeds, it must check to be sure that this disjointness property is main-
tained. If it appears that it is about to fail (i.e. two distinct grains in one of the collections become too close), various grains
will need to be reassigned to different distance functions and if need be a new distance function will be introduced. We call
this operation swapping. A crucial point is that M � N unless one considers some pathological initial conditions. Even then,
since the evolutions considered here are regularizing with a preference towards grains with small isoperimetric ratios, M is
expected and observed to be fairly small at subsequent times during the evolution.
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1. Given the initial sets R0
1; . . . ;R0

N construct M functions, d0
k so that each is the signed distance function for a
collection Nk of disjoint grains so that [M
k¼1Nk ¼ [N

k¼1Rk.
For n ¼ 0; . . . ;nmax, perform steps 2–5.

2. Convolution: Form the convolutions: AkðxÞ :¼ KDt � dn
k for k ¼ 1; . . . ;M

3. Comparison: Construct BkðxÞ for k ¼ 1; . . . ;M to remove overlaps and vacuums from the convolution:
BkðxÞ ¼
1
2
ðAkðxÞ �max

‘
fA‘ðxÞ : ‘ – kgÞ
4. Redistancing: Construct the signed distance function d
nþ1

2
k ðxÞ in a tubular neighborhood of the zero-level set

of BkðxÞ. For k ¼ 1; . . . ;M according to
d
nþ1

2
k ¼ RedistðBkðxÞÞ
5. Swapping: If necessary swap appropriate grains between signed distance functions to ensure that all the grains
associated to given signed distance function remain well separated. Redistance around swapped grains and
denote the resulting signed distance functions as dnþ1

k .
2.1.1. Details
We now describe the steps of the above algorithm in more detail in the fully discrete setting. For convenience, the for-

mulas are written down in the 2D setting, but extend trivially to all dimensions.

2.1.1.1. Convolution. We define the convolution kernels GDt and KDt in terms of the space-discretized solution to the heat
equation ut ¼ uxx þ uyy. Suppose the grid discretizes ½0;1�2, with equal grid spacing ðDx ¼ DyÞ. Let ui;jðtÞ be the space-discret-
ized approximation to uðx; y; tÞ at ðiDx; jDy; tÞ. Using centered differencing in space, we obtain:
d
dt

ui;jðtÞ ¼
1

Dx2 ððuiþ1;j � 2ui;j þ ui�1;jÞ þ ðui;jþ1 � 2ui;j þ ui;j�1ÞÞ: ð1Þ
Apply the discrete Fourier transform in space to obtain,
d
dt

ûr;s ¼
2

Dx2 ðcosð2psDxÞ þ cosð2prDxÞ � 2Þûr;s:
Given initial data ûr;sðtÞ, this ODE has solution ûr;sðt þ DtÞ
ûr;sðt þ DtÞ ¼ ûr;sðtÞ exp
�2Dt
Dx2 ð2� cosð2prDxÞ � cosð2psDxÞÞ

� �
:

Therefore, the discrete heat equation (1) has solution ui;jðt þ DtÞ ¼ ui;j � ðGDtÞi;j where * denotes the discrete convolution and
ðGDtÞi;j is defined via its discrete Fourier transform:
ðbGDtÞr;s ¼ exp
�2Dt
Dx2 ð2� cosð2prDxÞ � cosð2psDxÞÞ

� �
:

Finally, we implement a Richardson extrapolation-like procedure to improve the accuracy of the kernel, (as described in
[4]), and define:
KDt ¼
1
3

4G3
2Dt � G3Dt

� �
:

2.1.1.2. Comparison. The convolution step gives diffusion generated motion along simple interfaces, but may create overlaps
or vacuums at junctions where multiple interfaces meet. To enforce the desired no-overlap/no-vacuum condition, we apply a
comparison step to obtain the updated level set functions
BkðxÞ ¼
1
2
ðAkðxÞ �maxfA‘ : ‘ – kgÞ;
This formulation guarantees that exactly one of the BkðxÞ (for k ¼ 1; . . . ;M) is positive at any given location x. Furthermore,
this procedure ensures that the symmetric Herring angle condition is maintained at all triple points [4].

2.1.1.3. Redistancing. At each time step, we need to compute the signed distance function d
nþ1

2
k to a union Nk of disjoint grains;

we need the distance function only in a tubular neighborhood of the boundary @Nk of Nk. The width of the tubular neighbor-
hood is proportional to the kernel width, which in turn is proportional to

ffiffiffiffiffiffi
Dt
p

. We make use of a two-phase redistancing
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algorithm that depends only on the input values BkðxÞ ¼ 1
2 ðAkðxÞ �maxfA‘ : ‘ – kgÞ at grid points within two grid points of

the interface. For the remainder of the discussion of redistancing, we drop the subscript k for convenience, as each set is up-
dated independently of the others.

Define the set of boundary points b to be
Fig. 1.
centere
b ¼ fði; jÞ : ðjsgnðBiþ1;jÞ � sgnðBi�1;jÞj þ jsgnðBi;jþ1Þ � sgnðBi;j�1ÞjÞ > 0g;
where Bi;j ¼ BðiDx; jDyÞ and
sgnðxÞ ¼
1 if x > 0;
0 if x ¼ 0;
�1 if x < 0:

8><>:

These boundary values are set initially to respect the condition that jrdj � jrdnþ1

2j ¼ 1, while moving the interface as little as
possible. Specifically, we set
dij ¼
Bij

jrBijj
; 8ði; jÞ 2 b:
Typically, the centered difference approximation is appropriate for jrBijj, but does not work well on small grains. See Fig. 1
for an illustration in one dimension. The solid line is the exact signed distance function to the thick bar shown at the bottom
of the plot. The dashed line shows the centered difference approximation to the gradient of the signed distance function at
the indicated point. Upwind differencing is only first-order accurate in general, but gives a more accurate value for the gra-
dient at this point. We define
jrBijj1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Biþ1;j � Bi�1;j

2Dx

� �2

þ Bi;jþ1 � Bi;j�1

2Dy

� �2
s

;

jrBijj2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
max

jBiþ1;j � Bi;jj
Dx

;
jBi;j � Bi�1;jj

Dx

� �� �2

þ max
jBi;jþ1 � Bi;jj

Dy
;
jBi;j � Bi;j�1j

Dy

� �� �2
s

;

and define
jrBijj ¼
jrBijj1 if 1

2 jrBijj2 6 jrBijj1 6 2jrBijj2;
jrBijj2 otherwise:

(

We fix the values dij for all ði; jÞ 2 b, and first generate a first-order in space accurate approximation of the signed distance
function using fast sweeping as described in [30,33]. Then we perform an iterative second-order accurate method (described
in [23]) for a limited number of iterations on this output. The input BðxÞ may be far from a distance function near junctions.
−5 −4 −3 −2 −1 0 1 2 3 4 5
−5

−4

−3

−2

−1

0

1

2

Failure of centered differencing on small grains. The thick black line indicates the set R ¼ fx : dðxÞ > 0g. The slope of the dashed line indicates the
d difference approximation to jrdj1 at the specified point. The upwind differencing finds jrdj2=1, the correct value for jrdj.



8020 M. Elsey et al. / Journal of Computational Physics 228 (2009) 8015–8033
Performing the fast sweeping initially allows us to perform only a limited number of iterations with the second-order meth-
od, which is the most time-intensive part of the algorithm.

2.1.1.4. Swapping. The swapping step allows each signed distance function to store many grains safely. Without this step, it
would be necessary to maintain each individual grain in a separate set to guarantee that coalescence could not occur. For
example, in a calculation performed on a 40962 grid, we begin with over 160,000 grains and use only M ¼ 32 sets to track
them all. The algorithm introduces new signed distance functions if needed to ensure that inter-grain spacing is maintained.
In our experience, the algorithm typically does not require more than M ¼ 32 sets in two dimensions, and not more than
M ¼ 64 sets in three dimensions. As the grain network evolves we find it will rarely, if ever, introduce new signed distance
functions. Without the savings of both memory and computational time permitted by this additional step (allowing the
number of sets, M, to satisfy M � N, the total number of grains), such a large-scale computation would be impossible.

Our approach, described below, is similar to that of Krill and Chen [16]. They reassign grains to prevent any particular
grain from being maintained in the same set as any of its nearest or second-nearest neighbors. We, instead, make sure that
any two grains described by the same signed distance function are not too close (we will be more precise shortly). This dis-
tinction is significant for our algorithm, as spatial separation is key to prevent distinct grains, described by the same signed
distance function, from interacting during the convolution step (the width of the kernel is of course related to the time step
size, which can be large thanks to the unconditional stability of the proposed algorithms).

To describe this algorithm we must first outline some notation. First recall that the set Nk ¼ fx : dkðxÞ > 0g corresponds to
a collection of disjoint grains. These grains are the connected components of Nk. We say that two grains, say, Ra and Rb in Nk

are s-close if their union is completely contained in the same connected component of fx : dkðxÞ > �sg (which is trivially
checked by comparing the ð�sÞ-super level set membership of any two grid points belonging to Ra and Rb). We choose
s > 0 to be proportional to

ffiffiffiffiffiffi
Dt
p

to prevent distinct grains in Nk from interacting during the convolution step. In the simu-
lations presented in Section 3, we take s � 6

ffiffiffiffiffiffi
Dt
p

. See Fig. 2 for illustration of the selection process.
Here we describe the new step in the algorithm in greater detail.

1. For k ¼ 1; . . . ;M, initialize dnþ1
k ¼ d

nþ1
2

k .
2. For k ¼ 1; . . . ;M: While there are at least two grains in dnþ1

k that are s-close, select any s-close pair of grains from dnþ1
k , and

perform steps 3–7.
3. Select the smaller grain from the pair (measured by the number of grid points contained in each grain) and denote the

signed distance function they are associated with as k. Let dGðxÞ be the signed distance function to the boundary of
the selected grain and define the set X ¼ fx : dGðxÞ > �sg.

4. Find a set, Nnþ1
‘ , such that ‘ – k and dnþ1

‘ ðxÞ 6 �s 8 x 2 X. If such a set cannot be found, increment M  M þ 1, initialize
dnþ1

M ¼ �s, and select ‘ ¼ M.
5. Add the grain to Nnþ1

‘ by setting dnþ1
‘ ðxÞ ¼ dGðxÞ 8 x 2 X.

6. Remove this same grain from Nnþ1
k by setting dnþ1

k ðxÞ ¼ �s 8x 2 X.
7. Redistance dnþ1

k and dnþ1
‘ on the set X.

3. Numerical results

In this section, two types of numerical results are presented. First, we display the convergence of our algorithm an exact
solution known for two-phase motion, and demonstrate that we match a known solution well in three-phase motion. Next,
we examine the spatial and temporal convergence of our algorithm in a multiphase case for which no exact solution is
known. Finally, we demonstrate the quality of our algorithm on large data sets simulating normal grain growth using sta-
tistical measures such as average grain size and grain area distribution.
Fig. 2. (a) Part of a grain pattern. (b) Overlay of the boundary of dnþ1
2 > 0 (solid line) and dnþ1

2 > �s (dotted line) on the signed distance function dnþ1
2. (c)

Same for dnþ1 after a grain is removed and dnþ1 is recalculated.
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3.1. Convergence to exact solutions in two phase motion

We begin by verifying that our algorithm accurately simulates two phase motion by mean curvature on the simplest
examples in two and three dimensions: the circle and the sphere. In each case, the motion reduces to the simple ordinary
differential equation,
Table 1
Converg

Reso

8	 8
16	
32	
64	
128
256
512
1024
2048
_rðtÞ ¼ j ¼ �C
r
; ð2Þ
where C ¼ 1 for the circle and C ¼ 2 for the sphere. Eq. (2) has the solution
rðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rð0Þ2 � 2Ct

q
:

In our tests, we chose rð0Þ ¼ 0:25. For the circle, we took as our stopping time tH ¼ 3=128, and for the sphere tH ¼ 3=256, so
that the exact solution has rðtHÞ ¼ 0:125. While the evaluation of the curvature is second-order accurate in space and time,
the method as a whole is expected to show linear convergence in both space and time. This is due to the time integration,
which operates under the assumption that curvature remains constant through each iteration. See Tables 1 and 2 for numer-
ical results. The results labeled ‘‘Exact Redist Result” were obtained by replacing the distance function at the redistancing
step by the exact distance function for a circle or sphere with the same zero-level set at each step. We note that the linear
convergence rate is strongly indicated by the exact redistancing results for resolutions P 256	 256 for the circle and
P 64	 64	 64 for the sphere. Our redistancing technique causes some cancellations of error at low resolutions, but follows
the linear convergence trend shown by the exact redistancing results well at higher resolutions.

3.2. Comparison to known profile in three phase motion

In this test of three phase motion, we choose homogenous Neumann boundary conditions and consider a T-junction ini-
tial condition as shown in Fig. 3. It was shown in [10] that there is an exact solution for this initial T-junction geometry con-
sisting of a steady profile moving at constant speed. The profile is given for 0 6 x 6 0:5 by:
yðx; tÞ ¼ 3
p log cos

px
3

� �� �
þ ðy0 � vtÞ;
where v is the velocity of the profile and y0 is determined by the initial location of the T-junction. Fig. 3 shows the close
agreement between the predicted profile where vt was chosen to match the computed profile at x ¼ 0. These results were
computed on a 128	 128 grid. In (a), the predicted profile and computed profiles are indistinguishable. Parts (b), (c), and (d)
zoom in successively on the final computed profile and the associated prediction. We see that the results differ by less than
10�3 for all x. The triangular ‘‘split” in the profile seen in the zoomed views is purely a visualization artifact.

3.3. Convergence of multiphase motion

There are no explicit solutions available for the evolution of a general grain pattern, especially through topological
changes. Furthermore, there is no rigorous notion of a weak solution with uniqueness through such events. However, it is
reasonable to expect that at least the statistical descriptors of the network (for example, the distribution of grain areas)
to be eventually independent of further spatial or temporal resolution under refinement. To test this expectation, we choose
an initial condition containing 11,217 grains and sample on grids of 1024	 1024;2048	 2048 and 4096	 4096, refining the
discretization in both space and time. We keep the ratio between Dx and Dt constant to refine both spatial discretization and
the effective sampling rate of the Gaussian kernel. Table 3 describes the simulations.

The simulation runs for total time 80=10242. Approximately 6000 grains disappear during this evolution, corresponding
to many thousands of topological transitions (i.e. elimination of edges). Less than half the original number of grains remain at
the end of the simulation. The number of grains remaining after each simulation varies (shown in Table 3), but this is not a
ence check: motion by curvature of a circle.

lution Iterations rðtHÞ % Error Exact Redist Result % Error

7 0.143812 15.0493 0.068539 45.1687
16 15 0.124301 0.5595 0.112370 10.1040
32 30 0.123497 1.2022 0.123544 1.1649
64 60 0.123918 0.8653 0.124435 0.4520
	 128 120 0.124246 0.6110 0.124562 0.3501
	 256 240 0.124585 0.3323 0.124751 0.1996
	 512 480 0.124797 0.1627 0.124870 0.1043
	 1024 960 0.124900 0.0800 0.124934 0.0532
	 2048 1920 0.124952 0.0383 0.124966 0.0268



Table 2
Convergence check: motion by curvature of a sphere.

Resolution Iterations rðtHÞ % Error Exact Redist Result % Error

8	 8	 8 7 0.153862 23.0896 0.113474 9.2212
16	 16	 16 15 0.128935 3.1484 0.120004 3.9964
32	 32	 32 30 0.124040 0.7682 0.123044 1.5648
64	 64	 64 60 0.123881 0.8951 0.124010 0.7923
128	 128	 128 120 0.124289 0.5688 0.124481 0.4150
256	 256	 256 240 0.124627 0.2988 0.124735 0.2121
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Fig. 3. (a) Interface shown at various times in evolution (solid). The exact profile is overlaid (dotted) once a constant profile is attained. (b)–d) Successive
zoom in to the computed profile (solid) and exact profile (dotted). The triangular region visible in (c) and (d) is a visualization artifact.

Table 3
Input parameters and final number of grains for simulations testing convergence of multiphase motion. nt indicates the number of time steps used, and
nðnt 
 DtÞ indicates the number of grains remaining at the end of the simulation.

Simulation Dx Dt nt nðnt 
 DtÞ

1024	 1024 1=1024 0:8=10242 100 5177

2048	 2048 1=2048 0:4=10242 200 5286

4096	 4096 1=4096 0:2=10242 400 5398

8022 M. Elsey et al. / Journal of Computational Physics 228 (2009) 8015–8033



M. Elsey et al. / Journal of Computational Physics 228 (2009) 8015–8033 8023
good measure of the convergence, because there is a lower limit on the size of grains that can be accurately represented by a
given time step. Instead, it is more appropriate to look at statistical quantities (such as the distribution of grain areas) and the
actual microstructure resulting from the simulations. These are shown in Fig. 4. The histogram of grain areas demonstrates
that each simulation has a very similar distribution of grain areas for grains with areas larger than approximately 10�4. The
deviation in the total number of grains remaining in each of the simulations can be attributed almost fully to the differences
in the first bin alone of the histogram.

A small section of the microstructure is shown in Fig. 4(c), one 25th of the entire computational domain for each simu-
lation. There are very few differences between the evolution with Dx ¼ 1=4096 and with Dx ¼ 1=2048. There are consider-
ably more differences between these simulations and the result with Dx ¼ 1=1024, but even there, the majority of the
microstructure exactly matches that computed at higher resolutions. The agreement between the results is remarkable con-
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Fig. 4. Multiphase grain motion convergence test results. Each test was run for total time 80=10242. Dx ¼ 1=1024;Dt ¼ 0:8=10242 corresponds to blue,
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Fig. 7(a). Note that our method handles topological changes naturally, and that the energy of the system decreases even as
over 150,000 grains disappear throughout 1500 iterations.

Several analytical approaches predict the mean grain radius hri to grow as hri � Ct1=2 (for example, see [7,11,17]). In nor-
mal grain growth, characterized by self-similarity of the distribution of r=hri, it immediately follows that the average grain
area hai is predicted to grow linearly as a function of time. We compute the average grain area as
Fig. 8.
hai ¼ 1
NðtÞ ;
where NðtÞ is the number of grains surviving at time t, and see linear growth following a short relaxation time. This relax-
ation time is due to the initial condition, which we chose to be the Voronoi diagram for points distributed uniformly at ran-
dom throughout the domain. Such an initial condition contains very few small grains and does not respect the Herring angle
condition. Initially the evolution corrects the angle conditions and some time must pass before the smallest grains are found
in the correct proportion so as to allow the mean grain area to increase linearly. See Fig. 7 (b) and (c).

Two other measures of interest are the relative grain area distribution and the number of edges distribution, as defined in
[15]. Let Gðn; tÞ be the proportion of grains with n grain boundaries at time t, and Fðn; tÞdn be the number of grains with rel-
ative area in ½n; nþ dn� at time t, with n ¼ a=hai. Normal grain growth is characterized by the self-similarity of F as t varies. See
Fig. 8, which suggests that F is approximately self-similar for t P 300Dt.

Fig. 9 shows the evolution of the number of edges distribution. Note that the maximum of this distribution is initially at
six sides, then shifts to five sides and back to six sides as the evolution proceeds. This behavior was seen in multiple simu-
lation runs. The number of edges distribution is of general interest and has been reported for both simulations [27,9,12,15]
and experiments [8]. The maximum has been found at both five and six sides. It is not known if this distribution should be
self-similar through time as the relative grain area distribution is predicted to be (see Fig. 8).

3.5. Three-dimensional simulation of grain growth

Our algorithm and its implementation extends with only minor modifications to three dimensions very naturally. We
again consider the case in which all interfaces (surfaces) move with normal velocity equal to the mean curvature of the sur-
face. We discretize our computational domain the unit cube with Dx ¼ Dy ¼ Dz ¼ 1

256, and again apply periodic boundary
conditions. We maintain 64 sets of disjoint grains to track the grains through iterations. In 3D, each grain can have many
more neighbors than in 2D; thus, in general a larger number of sets Nk are necessary to keep grains within the same set
well-separated.

Here, our initial condition contains 16,767 total three-dimensional grains. See Fig. 11 for a view of grains contained in five
of the 64 sets. We take 500 iterations, at which time 853 grains remain. See Fig. 10 for the evolution of the number of grains
and average grain volume. We note that the dependence of hvi on t is non-linear, as opposed to the relationship of hai on t in
two dimensions. In [1], the authors report that the growth kinetics exhibit power-law behavior following an initial transition
phase, specifically, they report
hvi
1

3n ¼ ct þ d;
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0 5 10
where n is identified as the kinetic exponent for grain growth, i.e.
hri � Ctn
gives the long-term behavior of average grain size. The experimental results reported in [1] vary, reporting 1=4 6 n 6 1=2
where they find n ¼ 0:48� 0:04 using Monte Carlo methods. Our simulation data is presented in Tables 4 and 5. Our results
for 50 6 tmin 6 250 give 0:48 6 n 6 0:55 which is slightly larger than what was found in [1].



Fig. 11. Each subfigure shows the grains from five sets (of 64 total sets) at various times in the evolution. (a) The initial condition contains 16,767 total
grains. (b) After 100 iterations, there are 6911 grains. (c) After 200 iterations, there are 3101 grains. (d) After 400 iterations, there are 1189 grains.

Table 4
Fit of data from iterations in range tmin 6 t 6 500 to hvi1=3n ¼ ct þ d, with 95% confidence.

tmin c n

10 2:6	 104 0:593� 0:007

50 3:4	 104 0:548� 0:005

100 4:4	 104 0:512� 0:005

150 5:3	 104 0:487� 0:005

200 5:3	 104 0:486� 0:009

250 3:5	 104 0:544� 0:018
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Figs. 11 and 12 show the same sets at later times in the evolution. Note that some grains may have swapped in or out of
these sets during the evolution and thus may not be included in the visualization consistently, though large grains are
swapped only rarely. Fig. 13 shows a single grain from two viewpoints after 500 iterations. At this time 853 grains remain
in the simulation. This grain is approximately 40 grid points across in each dimension. The average effective grain radius as
measured from grain volume at this time is approximately 17 grid cells. Thus the average grain is somewhat smaller than the
featured grain, but not by a significant amount. The grain appears to be very well resolved on this grid. The individual facets
are apparent and are separated by sharp edges.



Fig. 12. Grains from five level sets after 500 iterations. 853 of the initial 16,767 grains remain.

Fig. 13. Two views of a single grain (corresponding to a 180� rotation in the xy-plane) chosen from the evolution after 500 iterations. This grain is
approximately 40 grid cells across in each direction, slightly larger than average. The grain is very well resolved, with facets, edges, and corners all easily
distinguished.

Table 5
Circular grain growth with bulk energies: simulation and prediction of growth through final time 500Dt, before circular grains begin to collide.

Initial radius Final radius Predicted radius Relative error (%)

0.03331 0.04349 0.04379 0.68
0.03026 0.03092 0.03145 1.68
0.03014 0.03028 0.03080 1.68
0.03010 0.02999 0.03059 1.95
0.03004 0.02940 0.03024 2.89
0.02992 0.02866 0.02952 2.90
0.02475 0 0 —
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Much of the statistical analysis remains to be done in three dimensions. Statistics on the fully three-dimensional runs are
of great interest in materials science as materials are inherently three-dimensional. Furthermore, it is also important to rec-
oncile results from two-dimensional simulations to results from cross-sections of three-dimensional computations.

To this end, we immediately see that the character of cross-sections of three-dimensional computations is markedly dif-
ferent from that of the two-dimensional computations. Fig. 14 shows one such cross-section. Obviously the symmetric
(120�) angle condition is not expected to be preserved in cross-sections, and does not appear to be in the figure. More tell-
ingly, Fig. 15 shows the relative area distribution and number of edges distribution for an ensemble of these cross-sections
(containing 66,437 two-dimensional grains). In agreement with data from other three-dimensional simulations (e.g. [31,1]),
small grains are present in cross-section in much higher frequencies than two-dimensional simulations predict. As men-
tioned in [1], the greater frequency of small grains in cross-section can be partially attributed to the fact that cross-sectional
planes may cut across the ends of grains that are large in three dimensions. Furthermore, the number of edges distribution
(shown in Fig. 15) is much flatter and wider than predicted by two-dimensional simulations.

4. Simulations in the presence of bulk energy terms

A simple extension to the model considered in previous sections is the inclusion of bulk energy terms:
E ¼
X
k<‘

ðlength of Ck‘Þ þ
X

k

ðarea of phase kÞek:
where ek denotes the bulk energy density for phase k. This gives rise to the following normal velocity
vnðCk‘Þ ¼ jk‘ þ e‘ � ek; ð4Þ
see, for example, [22,34,5]. Note that adjacent phases with equal bulk energy density terms will evolve solely by curvature,
as the bulk energy contributions from each phase will cancel.

In [4], the authors present a simple modification to the two-phase algorithm to generate motion with normal speeds of
the form
vnðcÞ ¼ jþ e:
In analogy, our multiphase algorithm changes in only one step. We add an additional term to the convolution step:
AkðxÞ :¼ KDt � dk � 2ðDtÞek:
This additional set of parameters allows for the simulation of a wider class of motions. For example, an energy and normal
speed of this form can be used to simulate the growth of grains on a background medium, by giving the background medium
a bulk energy greater than that of the grains. We present two examples of this growth in two dimensions.
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tension is taken to be unity (as with all of our simulations). If one considers an isolated grain of radius r, then it follows from
Eq. (4) that
rations, (d) 1000 iterations, (e) 1500 iterations, and (f)
_r ¼ �1
r
þ 100

3
ð5Þ
Therefore, grains with an initial radius greater than rcrit ¼ 0:03 will grow, and those with initial radius less than rcrit will
shrink. One could consider this to be a highly simplified of model of solidification.

We now consider the an initial condition consisting of 100 circular grains arranged in a uniform grid whose radii are cho-
sen from a normal distribution with mean 0.03 and standard deviation 0.002. The domain is ½0;1�2 and we take
Dx ¼ Dy ¼ 1=500. Fig. 17 shows the initial condition and the results at varying stages through 2000 iterations. Note that
many circles with small initial radii have entirely disappeared. The accuracy of the numerical results for selected circles
are summarized in Table 4. The predictions are generated by numerically solving Eq. (5) up to time t ¼ 500Dt. The first
and last table entries follow the largest and smallest circles in the computation, while the other entries select circles with
initial radii near rcrit . Radii are measured by finding the zero of the distance function measured horizontally from the grain
center (which is expected and observed not to move while the grains grow as perfect circles). The simulation data shows that
the experimental value of rcrit satisfies 0:3010 < rcrit < 0:3014.

Note that in the presence of bulk energy terms, even for the 2D evolution, pinch-off of grains becomes possible and in fact
rather frequently observed. In this contrived experiment, the ‘‘background” grain pinches off many times into separate
pieces. This is a type of topological transition typically not considered in front-tracking based 2D grain boundary computa-
tions, as it is believed not to occur in two-dimensional networks evolving under pure curvation motion.

5. Conclusion

The algorithm proposed in [4] is extended here to the case of many (e.g. hundreds of thousands) grains, with allowances
for bulk energies, allowing for accurate two- and three-dimensional simulations of systems larger than those obtained using
other algorithms. Such large scale simulations may allow for a more complete statistical description of grain growth, partic-
ularly in three dimensions. The implicit representation of interfaces (edges in two dimensions, surfaces in three dimensions)
within this model allows topological changes to occur naturally, without any explicit decision making about the nature of the
change in topology or any implicit restrictions on the type of topological changes that may arise.

The model has been shown to accurately simulate well-understood motions and to predict statistics in two- and three-
dimensional simulations of grain growth that are in keeping with both experiment and other simulations.
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In future work, we intend to extend the model to allow for varying surface tensions, so that the normal velocity of an
interface is given by
vnðCijÞ ¼ fijjij þ ej � ei;
allowing for the simulation of a very general class of motions that are of interest in applications. Further refinement of the
numerical techniques used should allow for even larger simulations of three-dimensional grain growth, a phenomenon
which is not as well studied as the two-dimensional case. The statistics arising in this case are of great interest. They should
be carefully compared to statistics arising from other simulation techniques and from available experimental results.
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